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Poisson log-likelihood: accurate noise modelling
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The problem of noise in PET Image Reconstruction s.cod:-oincan

Reduction of injected dose or shorter scanning time
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The problem of noise PARAMETERS NOISY
(often pixel values)
=/
+ ML estimates can be highly noisy L(x|m)

 Prior knowledge about the parameter values can compensate for noise,

using Bayes’ theorem POSTERIOR LIKELIHOOD ~ PRIOR
p(x|m) < p(m|x)p(x)

* The posterior: likelihood function x p(x)
+ Can use the notion of “energy” for modelling the prior:
p(x) < exp[ — fU(x)]

* Images considered improbable (low p(x)), assigned high energy U(x)

* Maximum a posteriori (MAP) reconstruction

The MAP objective

» Maximum a posteriori (MAP) reconstruction
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Examples of the energy
function U(x) for the prior

Can use guidance weights, W
based on similarity of values in
pixels ¢ and j in a guide image
(e.g. MRI, or current PET
estimate).

U(x) = Z]: Z fcj‘i/cjw(xc - x;)

j=1 CENj

If binary weights used,
called “Bowsher”
method.
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Example for PET
Quadratic prior

[ EM update
Denoising

X =arg maxZ(miln(Ax)i — (Ax);) — pU(x)
X =

Fusion

Initial image

MAP objective function

UPDATE ~ GRADIENT (or SCORE) of the LOG-LIKELIHOOD
I

{ EM update
Denmsmg

Fusmn

n™ iteration

1 J 5
U(x) =12 Z wi (x; — x;)
j=1 =1

UPDATE ~ GRADIENT OF the LOG PRIOR

Fusion

—40\

EM update I ﬂ}

Denmsmg

Iast iteration
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EM
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De Pierro TMI 1995
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Example results

U(x) =z]: z Wcj(xc — xj)z

J=1ceN;

Bowsher
Increasing MRI guidance
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Limitations of ML and MAP Image Reconstruction

Reduction of injected dose or shorter scanning time
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The motivation for deep learning

+ Conventional MLEM and MAPEM
* Noisy, low-resolution data — noisy images with Gibbs ringing
* Noise compensation (regularisation) can be too simple (quadratic, TV, RDP, ...)
... or too imposing (e.g. MRI guidance can be wrong!)
* Assumes
* Imaging system model
» Data noise distribution
* How to regularise (i.e. a model of how images should appear)
... but do we really know all these things?

* Deep learning can use
* Real-data examples to learn

Data

* more accurate imaging and noise models (and their ‘inverse’) ~ ~
» Ground truth or high-quality reference data SN
+ to learn the probability distribution of high-quality images ./
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» Ground truth or high-quality reference data
+ to learn the probability distribution of high-quality images

...with or without paired
measurement data

1469

Manifold of
PET images

Manifold of natural images

X1

Manifold of MR images
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FBSEM-Net
(supervised learning,
unrolled MAPEM)

3

EM update

Denoising

Denoising

Initial image

n™ iteration

MAP objective function

I
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De Pierro TMI 1995

Tast iteration
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Larger CNN

Ground Truth OSEM MAP-EM FBSEM-net FBSEM-net-adv

HOOOHH
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[6] G. Wang, J. Qi. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. IEEE Trans Med Imaging. 2012 Dec;31(12):2194-204.

2020 Jun 23;5(1):54-64.

Example reconstructions — 2D realistic simulation data (low count)

[7] A. Mehranian, A.J. Reader. Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation-Maximization. IEEE Trans Radiat Plasma Med Sci. 14
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Bias-variance assessment
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Model-based
(MLEM, MAPEM...)

Deep learned parts of
model

None

SENEIEETEL N ER G Maths, physics, stats,
model images
Generalisation (for Excellent
domain shift, OOD)

Fully 3D recon? Yes
Training data needs N/A
Network parameters N/A
Reconstruction time Fast
Image quality (within r=——=—=-==- 1

I Moderate !

training distribution)

Simple, established,
trusted, reliable(?)

Generative Al
methods (e.g.
diffusion)

Unrolled DL
methods

FBSEM-Net, ...

Maths, physics, stats Maths, physics, stats

I Moderate Good
Yes Yes
~10 - 100 pairs (3D) ~10 - 100 (3D)
100k — 30 million >30 million
Slow Slow
| Good Quite good |

I
Scanner-specific | ded. Generated

supervised learning , .
| samples: uncertainty |
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Generative-Model-Based Fully 3D
PET Image Reconstruction by
Conditional Diffusion Sampling

MmN

George Webber?, Yuya Mizuno?, Oliver D Howes?, Alexander
Hammers3, Andrew P King?, Andrew J Reader?!

1. School of Biomedical Engineering & Imaging Sciences, King’s College London, UK
2. Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
3. Guy’s and St Thomas’ PET Centre & King’s College London, UK

EPSRC Centre for Doctoral Training

Smart Medical
Imaging
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Forward diffusion process (random)

Reverse diffusion process (generative)

Score-based generative models (SGMs)

[3]J. Ho et al. “Denoising diffusion probabilistic models”. In: Advances in Neural Information Processing Systems. Vol. 33. 2020:6840-6851.
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Score-based generative models

Forward diffusion process: increasing levels of additive Gaussian noise

Reverse generative process, uses the gradient of log p;(x;)  score VEcTor

Approximate V, log p; (x;) with sg(x¢, t)
Just a denoising network sg!

Provide noise level t, and image made noisy at that level x; : train network to map to the clean image x,
In the generative process, renoise the denoised image, to be slightly less noisy than before (t — 1),
and enter back into the generative process at that new time step (noise level)
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Prior probability density

Increased prior
probability density
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Prior probability density

Increased prior
probability density

/ Generative denoising
step
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Prior probability density

Increased prior
probability density

+* "o. Equal likelihood

:. o images (smaller circle
**" = higher likelihood)
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Prior probability density

EM updates based just on increasing
measured data log-likelihood

} Data consistency step

Increased prior
probability density

e "o' Equal likelihood

:. o images (smaller circle
®*" = higher likelihood)
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Prior probability density Image Reconstruction by
Conditional Diffusion Sampling

Increased prior
probability density

Generative denoising
step

Data consistency step

N\ Bl

+* "+ Equal likelihood

. o images (smaller circle
**" = higher likelihood)
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Our likelihood-scheduled approach

- 1. Calculate likelihood :

&
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Our likelihood-scheduled approach

2. Perform
reconstruction

Data-conditioned
Tweedie's estimate

Renoise

Reconstructed

2 Scheduled PLL
image

achieved?

Measured
data

Gradient
ascent of PLL

Tweedie's estimate

Calculate
Tweedie's
estimate with s¢

Gaussian
noise
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Example reconstructions — 2D realistic simulation data (low count)

Singh et al Webber et al
2024 2024

Ground Truth OSEM MAP-EM FBSEM-net FBSEM-net-adv PET-DDS QOurs

SOHHHH!

ol [l [ [ L L [
O IREIN PN IS

Reconstructions for SGM-based methods are the mean of 5 sample reconstructions.

~

-

[6] G. Wang, J. Qi. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. IEEE Trans Med Imaging. 2012 Dec;31(12):2194-204.
[7] A. Mehranian, A.J. Reader. Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation-Maximization. /EEE Trans Radiat Plasma Med Sci. 7
2020 Jun 23;5(1):54-64.
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Bias-variance assessment
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Fully 3D reconstruction (real [*8F]-DPA714 data)

PET-DDS
(10% Count)

MLEM
(10% Count)

OSEM
(100% count)

Sagittal

Coronal

Transverse

QOurs
(10% Count)
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Alternative training data

The quality an SGM-based method is limited by the choice of training data
If we can provide better training data, we can obtain better results!

Ground truth Score-based Generative Model

POSTER
M-03-154
Webber etal.

Score-based Generative Model
(trained on pseudo-PET)
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Self-Supervised Deep-Learned Fully ING'S
3D Filtered Backprojection for Image Co //ege
Reconstruction Objectives with a LLONDON
Poisson Likelihood —_—

Movindu Dassanayake’, Julia A. Schnabel Poster
and Andrew J. Reader M-03-175

School of Biomedical Engineering and Imaging Sciences,
King’s College London, UK 'movindu.dassanayake@kcl.ac.uk

EPSRC Centre for Doctoral Training
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Engineering and
Physical Sciences
Research Council
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Reader A J 2023 Self-Supervised and Supervised Deep Learning for PET
Image Reconstruction arXiv:2302.13086
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F(6)

[] Conv 3°3, stride 1 [[] BatchNorm + ReLU
[[] MaxPool 2+2 [] Bilinear upsample

[] Conv 1°1, stride 1 €@ Channel concat.
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Results: MAPEM & DL-FBP-PLL (PLL+RDP)

1_0-2 N MAPEM [ BW+HC B BW+LC [ BW+SPH+HC B BW+SPH+LC [ SPH+HC SPH+LC
0.9—3

= ]

n 0.81

th
0.7—;
0.6-2

BW+SPH+HC BW+SPH+LC SPH+HC SPH+LC

DL-FBP-RDP generalizability between domains (at LC)
Similar performance to MAPEM is obtained with high generalizability between vastly different domains
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* Gaussian post-smoothing applied with
increasing sigma: 0-5x5x5 mm?3

* DL-FBP approaches a smaller bias at

c

clinical post-smoothing (4 x4 x 4 mm?3) -f:’
when compared to MLEM and MAPEM .’g

[

a

e

©

* DL-FBP-RDP can reconstruct P
©

~50x faster than MAPEM (100 iterations) &a

~b5x faster than MLEM (30 iterations)
* Reconstruction involves just one CNN,
one backprojection

Results: MAPEM & DL-FBP-PLL (PLL+RDP)

-&- DLFBP

- DLFBP+RDP
0.05 —>¢& MLEM

—— MAPEM
0.04 -
0.03 -
0.02 -

.o
0.01- : : : — X
0.26 0.28 0.30 0.32 0.34 0.36
Bias
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