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Aim & General approach
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SVRG - stochastic variance reduced gradient descent

101 _:. ........ —— ........ T

Algorithm 2 SVRG Algorithm

Given xo € R™, M, K, {ax > 0} jand y > 0
for k=0,1,...,K do
if ¥ mod y M = 0 then
X < X
for m € {
Compu
Store g
end for

entage NRMSE
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In this work, we observed that the performance of stochastic
algorithms was impacted by the choice of step size and pre-
conditioner. The optimal preconditioner 1s the inverse Hessian
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) sﬁ;hoose n] for the 3D PET problem [1]. Yet, a number of limited 55 5
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etd if ~SVRG Fig. 4. Lung lesion percentage NRMSE over multiple stochastic realisa-
Xi+1 < Xk + aka,mk (xx) # Update step tions with preconditioners anchored at different epochs. The BSREM
end for NRMSE value was computed for a single deterministic realisation
with (16).
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Proposed improved preconditioner ¢ € iy =g Kby

Ddata = diag( . )

AT1 K (n+1) [X(n) oD @(bm(x(n))]
_|_
Dprior = (HR(x)) ™ HR = V2R
2 2
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D,ior = dia HR(x diag (H"). = H; = R H? =28 Wik KKk
prio g( ( )) ( )J I Ox;0x; 4 I;M (5 4 xk) + X — xe| +€)3
D — Data Dprior o X assuming Wik = Wi
 Dyata + Dprior  AT1 + diag(HR(x)) x
Implemented diagonal preconditioner fudge factor for effect of
non-diagonal elements in HR
D — Xsm
- AT1 415 diag(HR (Xem ) )[Xem smoothed version of
current image
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Algorithm hyper parameters

ALG1

number of subsets divisor of num views
closest to 25

step size rule for a “heuristic”
0 < update<=10 -2 3
10 < update <= 100 - 2
100 < update <= 200 - 1.5
200 < update <= 300 > 1.0
300 > update = 0.5

subset selection rule “random”, every subset once in
every epoch
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Things we also tried but did not work well ...

DESPITE OUR GREAT RESEARCH
RESULTS, SOME HAVE QUESTIONED
OUR AlI-BASED METHODOLOGY.

BUT UE TRAINED A CLASSIFIER

* using elementwise minimum of D, and D, for D ON A COLLECTON OF GOOD AND
BAD METHODOLDGY SECTIONS,
 approximation of the inverse Hessian via the Woodbury matrix AND IT 5AYS OURS 15 FINE.

identity — )

* subset sampling based on subset gradient norm instead of
uniform sampling (no real performance gain)

* (S)PDHG with iterative calculation of the proximity operator of
R(x) 2 numerical approximation too slow

https://www.xkcd.com/2451/
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Finally - a big thanks to
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