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PET Rapid Image reconstruction Challenge

Goal of the challenge

Obtain an estimate to

Xref = argmax{®” (x) := Ly (x) — BR(x)},

x€R>q

as fast as possible (measured in terms of computation time).

= Combine deep learning as a warm start for an optimisation algorithm
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How can Deep Learning help us?

Learning-to-Optimise’, e.g.:
@ Learn the full update: x41 = NNg(xx, Vi)

@ Learn the preconditioner: xx41 = xx + axNNg(x%) Vi

= Convergence to X only under strong constraints ...

1 Chen et al. Learning to Optimize: A Primer and A Benchmark, JMLR 2022.
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Learning-to-Optimise’, e.g.:

@ Learn the full update: x41 = NNg(xx, Vi)

@ Learn the preconditioner: xx41 = xx + axNNg(x%) Vi

= Convergence to X only under strong constraints ...
However, for us we were not able to achieve a speed up: large 3D volumes, unstable training, few
training samples, too much variety between volumes

1 Chen et al. Learning to Optimize: A Primer and A Benchmark, JMLR 2022.
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How can Deep Learning help us?

Learning-to-Optimise’, e.g.:

@ Learn the full update: x41 = NNg(xx, Vi)

@ Learn the preconditioner: xx41 = xx + axNNg(x%) Vi

= Convergence to X only under strong constraints ...

However, for us we were not able to achieve a speed up: large 3D volumes, unstable training, few
training samples, too much variety between volumes

= Can combine deep learning with optimisation algorithm:

Xo > X1 > ..... > Xg | > |XKgi1| > XKi2—> ...

. J L J
e T

Use deep learning method
without convergence to
achieve speed up

Use classical iterative solver
to ensure convergence

Chen et al. Learning to Optimize: A Primer and A Benchmark, JMLR 2022.
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Educated Warm Start

Our approach:

@ Use neural network to provide a suitable
warm start image Xo

@ Supervised train using mean-squared-error
. Ng
with {XOSEM,i7 Xref,i}i:bl: ¢—‘

N
meinZ”NNQ(XOSEM,i) — Xeef,i||3 B
i=1

1=

@ Make network 1-homogenous (no bias +
ReLU activation), i.e.,

NNg(Ax) = ANNg(x), A >0

= Easier generalisation to different intensities

Use deep learning to
learn the initial value

X1

—> | X2

X3

~+

Use classical iterative solver
to ensure convergence
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Optimisation Algorithm

First-Order Optimisation

Given an initialisation xq, we iterate

Xk4+1 :'PZO[Xk‘FOUch@k} 1=0,1,2,...

with P>¢ a non-negativity projection.

Choices:

1.
2.
3.
4.

Initialisation xq
Step size rule ag
Preconditioner Dy,

Gradient approximation Vj = based on subsets of y, i.e. V&Y (xz)

-+ extensions: acceleration or momentum terms n
I A
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Algorithm 1 - SAGA with Momentum
@ Step size ay > 0: Distance over weighted Gradient (DOwG):

Distance estimator: 71 < max (||xx — Xol|, 7x—1)

Weighted gradient sum: vy < vi_1 + 72| Vi|®
=2
. 7
Step-size: ay  —*—

V Uk
@ Expectation Maximisation (EM) Preconditioner Dy, = (x; +¢) © AT1
@ SAGA Gradient estimator Vj, = V&Y (%) + V&Y (xi) — V&Y (%)
@ Katyusha-like momentum
Vi = VoY (X) + VY (xk) — VY (X)
Zktr1l = Zk + Oék@k
Xp41 = 0.5Zk41 + 0.5%

Subsets ordered in a staggered fashion, accessed in Herman-Meyer order, X is the last

prediction of the previous epoch.

PETRIC: PET Rapid Image Reconstruction Challenge



.
Algorithm 2 - SGD

@ Step size a, > 0: Distance over weighted Gradient (DOWG)?

@ Adaptive Preconditioner Dy:

D, — (xr+e)oAT1 if Poisson likelihood dominates
"o (k? 4 diag[V?R(x})]) if RDP strong

2 _ AT 3 y _ . ~ TNT .
k® = A diag [(AXOsem+b)2] A1 - Approximate row-sum of likelihood Hessian

@ SGD Gradient estimator Vj, = VoY (xk)

Xkt1 = Xk + ap D VOY (x1)

Subsets ordered in a staggered fashion, accessed in Herman-Meyer order.

2 Khaled et al. DOwG unleashed: An efficient universal parameter-free gradient descent method, NIPS 2018.
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.
Algorithm 3 - Full GD

@ Step size o, > 0: Barzilai-Borwein long step size

@ Adaptive Preconditioner Dy:

D, — (xr+e)o AT1 if Poisson likelihood dominates
"o (k? 4 diag[V2R(x4)]) if RDP strong

2 __ T 3: Y . . . .
k* = A diag [m} A1 - Approximate row-sum of likelihood Hessian
@ Full GD Gradient estimator V;, = V&Y (xj)
Xit1 = Xk + 0D VY (x5)
This is our “stable” method as we observed greatly varying performance of our subset-based
algorithms between datasets.
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Other ideas tested

Many different ideas were tested and it was found that ideas that worked on some datasets, would fail
on others.
Deep learning ideas:

@ input to network
@ network architecture (unrolling)
@ training loss
Optimisation ideas:
@ Adaptive Preconditioner: Adam, Adadelta, Adamax
Row-sum RDP hessian rather than diagonal
EM-preconditioner + RDP Hessian approximation
Asymptotically convergent implementation via gradient accumulation

Momentum terms

dh
Lots of heuristic choices for step-sizes, initial step-size etc m
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Thank you for listening!

We'd also like to thank the organisers of the challenge, and Zeljko Kereta for his
valuable discussions.
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Considering the expected progress

For SGD the expected progress is®:

Laj, Lajoj,
B[O (o)) < 8 (0) — (an = T8 ) 907 o)+ Z7
——

descent term variance term

L and o, = E[V®Y (xx) — V®Y(xx)] vary significantly between datasets. Also oy, needs to trade-off
descent and variance terms
This is a heuristic/hyperparameter tuning nightmare between datasets...

KISS principle: Keep It Simple Stupid!

3 Bottou et al. Optimization Methods for Large-Scale Machine Learning, SIAM Review 2018.
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Educated Warm Start - Results
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Educated Warm Start - Results
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Educated Warm Start - Results
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Educated Warm Start - Results
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